Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166718, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37060964

RESUMO

Adaptability to intracellular or extracellular cues is essential for maintaining cellular homeostasis. Metabolic signals intricately control the morphology and functions of mitochondria by regulating bioenergetics and metabolism. Here, we describe the involvement of PHLPP1, a Ser/Thr phosphatase, in mitochondrial homeostasis. Microscopic analysis showed the enhanced globular structure of mitochondria in PHLPP1-depleted HEK 293T and C2C12 cells, while forced expression of PHLPP1 promoted mitochondrial tubularity. We show that PHLPP1 promoted pro-fusion markers MFN2 and p-DRP1Ser637 levels using over-expression and knockdown strategies. Contrastingly, PHLPP1 induced mitochondrial fragmentation by augmenting pro-fission markers, t-DRP1 and pDrp1Ser616 upon mitochondrial stress. At the molecular level, PHLPP1 interacted with and caused dephosphorylation of calcineurin, a p-DRP1Ser637 phosphatase, under basal conditions. Likewise, PHLPP1 dimerized with PINK1 under basal conditions. However, the interaction of PHLPP1 with both calcineurin and PINK1 was impaired upon CCCP and oligomycin-induced mitochondrial stress. Interestingly, upon mitochondrial membrane depolarization, PHLPP1 promoted PINK1 stabilization and parkin recruitment to mitochondria, and thereby activated the mitophagy machinery providing a molecular explanation for the dual effects of PHLPP1 on mitochondria under different conditions. Consistent with our in-vitro findings, depletion of phlp-2, ortholog of PHLPP1 in C. elegans, led to mitochondrial fission under basal conditions, extended the lifespan of the worms, and enhanced survival of worms subjected to paraquat-induced oxidative stress.


Assuntos
Longevidade , Proteínas Quinases , Animais , Caenorhabditis elegans/metabolismo , Calcineurina , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293 , Humanos , Camundongos
2.
Drug Discov Today ; 27(10): 103317, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835313

RESUMO

That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways. Adipocyte-specific loss of PHLPP2 reduces adiposity, improves glucose tolerance,and attenuates fatty liver via the PHLPP2-HSL-PPARα axis. Discoveries of PHLPP1-mediated insulin resistance and pancreatic ß cell death via the PHLPP1/2-Mst1-mTORC1 triangular loop have shed light on its significance in diabetology. PHLPP1 downregulation attenuates diabetic cardiomyopathy (DCM) by restoring PI3K-Akt-mTOR signalling. In this review, we summarise the functional role of, and cellular signalling mediated by, PHLPPs in metabolic tissues and discuss their potential as therapeutic targets.


Assuntos
Resistência à Insulina , Fosfoproteínas Fosfatases , Proteínas Quinases Ativadas por AMP , Glucose , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Nucleares/metabolismo , PPAR alfa , Fosfatidilinositol 3-Quinases , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR
3.
iScience ; 25(2): 103766, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141506

RESUMO

Infiltration of arterial intima by foamy macrophages is a hallmark of early atherosclerotic lesions. Here, we investigated the potential role of Ser/Thr phosphatase PHLPP1 in foam cell development. PHLPP1 levels were elevated in OxLDL-exposed macrophages and high-fat diet (HFD)-fed zebrafish larvae. Using overexpression and knockdown approaches, we show that PHLPP1 promotes the accumulation of neutral lipids, and augments cellular total cholesterol and free fatty acid (FFA) levels. RNA-Seq analysis uncovered PHLPP1 role in lipid metabolism pathways. PHLPP1 interacted with and modestly increased ChREBP recruitment to Fasn promoter. PHLPP1-mediated lipid accumulation was attenuated by AMPK activation. Pharmacological inhibition or CRISPR/Cas9-mediated disruption of PHLPP1 resulted in lower lipid accumulation in the intersegmental vessels of HFD-fed zebrafish larvae along with a reduction in total cholesterol and triglyceride levels. Deficiency of phlp-2, C. elegans PHLPP1/2 ortholog, abolished lipid accumulation in high cholesterol-fed worms. We conclude that PHLPP1 exerts a significant effect on lipid buildup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...